Dynamic Analysis of Grid Connected Wind Turbine with a Permanent Magnet Synchronous Generator during Fault Conditions
نویسنده
چکیده
The use of wind turbines is increasing at very high rates in many countries around the world. Studies to evaluate the impact of connecting these new generation units to the existing power systems must be done. This paper proposes a wind energy conversion system for a grid connected permanent magnet synchronous generator (PMSG) and power electronic converter system. The model includes a PMSG model, a pitch-angled controlled wind turbine model, power electronic converters and a power system model. The control schemes in the paper include a pitch angle control for the wind turbine and voltage, var and current control for the power electronic converter. A phase to phase fault is simulated on 132 KV bus of power system model and the measured results obtained from grid connection of the permanent magnet synchronous generator are presented followed by some conclusions. Key-Words: Permanent Magnet, Synchronous Generator, Power Grid, Power Electronic Converter, Fault
منابع مشابه
Efficient low-voltage ride-through nonlinear backstepping control strategy for PMSG-based wind turbine during the grid faults
This paper presents a new nonlinear backstepping controller for a direct-driven permanent magnet synchronous generator-based wind turbine, which is connected to the power system via back-to-back converters. The proposed controller deals with maximum power point tracking (MPPT) in normal condition and enhances the low-voltage ride-through (LVRT) capability in fault conditions. In this method, to...
متن کاملOptimal Torque Control of PMSG-based Stand-Alone Wind Turbine with Energy Storage System
In this paper optimal torque control (OTC) of stand-alone variable-speed small-scale wind turbine equipped with a permanent magnet synchronous generator and a switch- mode rectifier is presented. It is shown that with OTC method in standalone configuration, power coefficient could be reached to its maximum possible value, i.e. 0.48. An appropriate control algorithm based on turbine characterist...
متن کاملAnalysis and Design of a Permanent-Magnet Outer-Rotor Synchronous Generator for a Direct-Drive Vertical-Axis Wind Turbine
In Permanent-Magnet Synchronous Generators (PMSGs) the reduction of cogging torque is one of the most important problems in their performance and evaluation. In this paper, at first, a direct-drive vertical-axis wind turbine is chosen. According to its nominal value operational point, necessary parameters for the generator is extracted. Due to an analytical method, four generators with differen...
متن کاملComprehensive Parametric Study for Design Improvement of a Low-Speed AFPMSG for Small Scale Wind-Turbines
In this paper, a comprehensive parametric analysis for an axial-flux permanent magnet synchronous generator (AFPMSG), designed to operate in a small-scale wind-power applications, is presented, and the condition for maximum efficiency, minimum weight and minimum cost is deduced. Then a Computer-Aided Design (CAD) procedure based on the results of parametric study is proposed. Matching between t...
متن کاملAn Optimal Integrated Control Scheme for Permanent Magnet Synchronous Generator-Based Wind Turbines under Asymmetrical Grid Fault Conditions
Abstract: In recent years, the increasing penetration level of wind energy into power systems has brought new issues and challenges. One of the main concerns is the issue of dynamic response capability during outer disturbance conditions, especially the fault-tolerance capability during asymmetrical faults. In order to improve the fault-tolerance and dynamic response capability under asymmetric...
متن کامل